How AI Startup BroadBridge Networks Helps Security Teams Make Sense of Data Chaos

Cybersecurity has grown into a morass. With increasingly hybrid computing environments, dispersed users accessing networks around the clock, and the Internet of Things creating more data than security teams have ever seen, organizations are throwing more security tools than ever at the problem. In fact, Jonathan Flack, principal systems architect at BroadBridge Networks, said it’s Read article >

The post How AI Startup BroadBridge Networks Helps Security Teams Make Sense of Data Chaos appeared first on The Official NVIDIA Blog.

How AI Startup BroadBridge Networks Helps Security Teams Make Sense of Data Chaos

Cybersecurity has grown into a morass.

With increasingly hybrid computing environments, dispersed users accessing networks around the clock, and the Internet of Things creating more data than security teams have ever seen, organizations are throwing more security tools than ever at the problem.

In fact, Jonathan Flack, principal systems architect at BroadBridge Networks, said it’s not unusual for a company with a big network and a large volume of intellectual property to have 50 to 75 vendor solutions deployed within their networks.

“That’s insanity to me,” said Flack. “How can you converge all the information in a single space in order to effectively to act upon it in context?”

That’s precisely the problem BroadBridge, based in Fremont, Calif., is looking to solve. The three-year-old company is a member of NVIDIA Inception, a program that provides AI startups go-to-market support, expertise and technology.

It’s applying AI, powered by NVIDIA GPUs, to security data such that varying data sources can be aligned temporally, essentially connecting all the dots for any moment in time.

A company might have active directory logs, Windows event logs and firewall logs, with events occurring within microseconds of each other. Overworked security staff don’t have time to fish through all those logs trying to align events.

Instead, BroadBridge does it for them, automatically collecting the data, correlating it and presenting it as a single slice of time, with precision down to the millisecond.

The company’s software effectively pinpoints the causes of events and suggests potential actions to be taken. And given that most security teams are understaffed amid a global shortage of qualified cybersecurity employees, they can use all the help they can get.

“Our objective is to lighten the workload so those people can go home after an eight-hour shift, spend time with their families and have some down time,” said Flack. “If you find an intrusion six months ago, you shouldn’t have to go mine through logs from all the affected systems to reassemble a picture of what  happened. With all that data properly aggregated, aligned, and archived you simply run a BlazingSQL query against all of your network data for that specific timeframe.”

Organic Approach to Data

While BroadBridge’s original models were trained on open-source data from the security community, the company’s AI approach is different from other companies in that providing a more mature model out of the gate isn’t necessary. Instead, BroadBridge’s system is designed to be trained by each customer’s network.

“GM is going to have a different threat environment than some DoD office inside the Pentagon,” said Flack. “We provide a good initial starting point, and then we retrain the model using the customer’s own network data over time. The system is 100 percent self-reinforcing.”

The initial AI model provides security analysts with the ability to work through events that need to be investigated. They can triage and tag events as nominal or deserving of more investigation.

That metadata then gets stored, providing a record of what the inference server identified, what the analyst looked at, and what other events are worthy of analysis. All of that is then funneled into a deep learning pipeline that improves the model.

BroadBridge uses Kubernetes and Docker to provide dynamic scaling. Flack said the software can run real-time analytics on a 100GB network. The customer’s deep learning process is uploaded to an NVIDIA GPU instance on AWS, Azure, Google or Oracle clouds, where the AI is trained on the specifics of the customer’s network.

The company’s internal development has unfolded on NVIDIA DGX systems, which are purpose-built for the unique demands of AI. The first wave of development was conducted on DGX-1, and more recently on DGX A100, which Flack said has improved performance significantly.

“Four or five years ago, none of what we’re doing was at all possible,” he said. “Now we have a way to run multiple concurrent GPU-based workloads on systems that are as affordable as some 1U appliances.”

More to Come

Down the line, Flack said he envisions exposing an API to third-party vendors so they can use BroadBridge’s data to dynamically reconfigure device security postures. He also foresees the arrival of 5G as boosting the need for a tool that can parse through the increased data flows.

More immediately, Flack said the company has been looking to address the limitations of virtual private networks in the wake of the huge increase in working from home due to the COVID-19 pandemic.

Flack was careful to note that BroadBridge has no interest in replacing any of the sensors, logs or assessment tools companies are deploying in their security operations centers, or SOCs. Rather, it’s simply trying to create a platform to help security analysts make sense of all the data coming from all of these sources.

“Most of what you’re paying your SOC analysts for is herding cats,” he said. “Our objective is to stop them from herding cats so they can perform actual analysis.”

See BroadBridge Networks present in the NVIDIA Inception Premier Showcase at the GPU Technology Conference on Tuesday, October 6. Register for GTC here.

The post How AI Startup BroadBridge Networks Helps Security Teams Make Sense of Data Chaos appeared first on The Official NVIDIA Blog.

AMD EPYC™ Processors Bring Advanced Security Features and High-Performance Capabilities to VMware Customers

— VMware vSphere® 7.0U1 adds support for AMD Secure Encrypted Virtualization-Encrypted State, enhancing security of data in virtualized environments 

— AMD EPYC processors provide up to 2.3x the performance compared to the competition on VMware1

SANTA CLARA, Calif., Sept. 30, 2020 (GLOBE NEWSWIRE) -- AMD (NASDAQ: AMD) today highlighted the latest expansion of the AMD EPYC™ processor ecosystem for virtualized and hyperconverged infrastructure (HCI) environments with VMware® adding support for AMD Secure Encrypted Virtualization-Encrypted State (SEV-ES) in its newest vSphere® release, 7.0U1.

With the latest release, VMware vSphere now enables AMD SEV-ES, which is part of AMD Infinity Guard, a robust set of modern, hardware enabled features found in all 2nd Gen AMD EPYC processors. In addition to VM memory encryption, SEV-ES also provides encryption of CPU registers and provides VMware customers with easy-to-implement and enhanced security for their environments.

“As the modern data center continues to evolve into a virtualized, hybrid cloud environment, AMD and VMware are working together to make sure customers have access to systems that provide high levels of performance on virtualization workloads, while enabling advanced security features that are simple to implement for better protection of data,” said Dan McNamara, senior vice president and general manager, Server Business Unit, AMD. “A virtualized data center with AMD EPYC processors and VMware enables customers to modernize the data center and have access to high-performance and leading-edge security features, across a wide variety of OEM platforms.”

“In a virtualized environment, it is critical to have protection of data not only from other virtual machines, but the hypervisor itself. This is why we chose to make vSphere 7 the first hypervisor to provide full SEV-ES support from AMD EPYC processors,” said Krish Prasad, senior vice president and general manager, Cloud Platform Business Unit, VMware. “This additional layer of security and data encryption is truly impactful for our customers as they can now encrypt data throughout their environment. But more importantly, customers don’t have to make changes to their applications to take full advantage of SEV-ES, making security implementation simple. AMD has made security an easy choice for our customers with these features and we’re excited to provide the security of AMD EPYC to them.”

The Growing AMD EPYC and VMware Ecosystem
AMD EPYC processors have become a leading choice to drive innovation of virtualization and HCI solutions due to their accelerated performance, including 2.3x better VMmark 3.1.1 performance compared to the competition2, class leading memory capabilities3, and a full security feature set with AMD Infinity Guard including SEV-ES and Secure Memory Encryption.

AMD has also worked closely with its OEM partners to create vSAN ReadyNodes™ certified for AMD EPYC processors and other AMD EPYC processor and VMware HCI solutions that offer leading performance, scalability, and total cost of ownership.

  • Dell Technologies
    • Dell EMC VxRail™ E Series hyperconverged systems – Featuring 2nd Gen AMD EPYC processors, these systems continue the successful collaboration between AMD, Dell Technologies and VMware enabling HCI for a wide set of use cases.
    • Dell EMC vSAN Ready Nodes – Using Dell EMC PowerEdge servers, customers can get the performance of AMD EPYC with the flexibility of Dell EMC vSAN Ready Nodes, hyperconverged building blocks for VMware vSAN™ environments.
  • HPE
    • HPE ProLiant DL325 and DL385 Gen10 and Gen10 Plus servers – Using 2nd Gen AMD EPYC processors, these servers are purpose built for VDI users, business-critical applications, and mixed workloads with scalable growth. The servers are vSAN ReadyNode™ certified as well.
  • Lenovo Data Center Group
    • Lenovo offers Lenovo ThinkSystem single and dual socket servers that are VMware vSAN ReadyNode™ certified. This includes the two socket Lenovo ThinkSystem SR645 and SR665 servers featuring enhanced performance and I/O connectivity for higher performance workloads and the single socket Lenovo ThinkSystem SR635 and SR655 servers to help customers accelerate higher performance workloads to improve efficiency.
  • Supermicro
    • Supermicro offers vSAN ReadyNode certified solutions with dual-socket AMD EPYC processors for customers that want to deploy the hyper-converged solution, as quickly as possible.

AMD EPYC processors, whether in single socket or dual socket configurations, provide VMware customers with an industry leading performance processor for VMware virtualization workloads4. Now with the enablement of SEV-ES on the latest release of vSphere®, customers can choose performance and security features when using AMD EPYC based VMware solutions from OEMs.

This update highlights a continuing collaboration between the two companies to provide VMware and AMD EPYC customers with a high-performance and secure virtualization experience for the modern data center.

You can read more about the latest version of vSphere and its support of SEV-ES in this blog from VMware and hear more about AMD EPYC for VMware solutions at VMworld 2020.

Supporting Resources

About AMD
For more than 50 years AMD has driven innovation in high-performance computing, graphics and visualization technologies ― the building blocks for gaming, immersive platforms and the datacenter. Hundreds of millions of consumers, leading Fortune 500 businesses and cutting-edge scientific research facilities around the world rely on AMD technology daily to improve how they live, work and play. AMD employees around the world are focused on building great products that push the boundaries of what is possible. For more information about how AMD is enabling today and inspiring tomorrow, visit the AMD (NASDAQ: AMD) websiteblogFacebook and Twitter pages.

AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

VMware, vSphere, VMmark, VMware vSAN and VMworld are registered trademarks or trademarks of VMware, Inc. or its subsidiaries in the United States and other jurisdictions.

________________________

1 4-node, 2x EPYC™ 7742 processor powered cluster with a score of 24.08@ 28 tiles on the VMmark® 3.1.1 benchmark using vSAN (https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2020-04-28-DellEMC-PowerEdge-R6525.pdf) delivers 2.27x more performance and 2.33x higher tile/VM workload capacity than the VMmark® 3.1.1 vSAN performance of a 4-node, 2x Intel Xeon Platinum 8268 processor powered cluster with a score of 10.63@12 tiles (https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2020-06-30-Supermicro-SYS-2029BT-HNR.pdf) as of 06/08/20. ROM-737
2 ROM-737
3 EPYC™ 7002 series has 8 memory channels, supporting 3200 MHz DIMMs yielding 204.8 GB/s of bandwidth vs. the same class of Intel Scalable Gen 2 processors with only 6 memory channels and supporting 2933 MHz DIMMs yielding 140.8 GB/s of bandwidth. 204.8 / 140.8 = 1.454545 - 1.0 = .45 or 45% more. AMD EPYC has 45% more bandwidth. Class based on industry-standard pin-based (LGA) X86 processors. ROM-11
4 2P 2nd Gen EPYC™ 7702 powered server scores a world record result of 12.78 Score @ 14 tiles https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2019-08-07-HPE-ProLiant-DL385Gen10.pdf. The next highest published score is 9.02 Score @ 9 tiles on a 2-n, 2-socket Xeon® 8280 powered server https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vmmark/2019-04-02-Fujitsu-RX2540M5.pdf as of 11/13/19. ROM-389


Contacts:
Aaron Grabein
AMD Communications
+1 512-602-8950
 Aaron.Grabein@amd.com

Laura Graves
AMD Investor Relations
+1 408-749-5467
 Laura.Graves@amd.com

AMD logo black .jpg

Source: Advanced Micro Devices

AI for Every Enterprise: NVIDIA, VMware CEOs Discuss Broad New Partnership

Promising to bring AI to every enterprise, VMware CEO Pat Gelsinger and NVIDIA CEO Jensen Huang kicked off VMworld 2020 Tuesday with a conversation detailing the companies’ broad new partnership. VMware and NVIDIA announced that, together, they will deliver an end-to-end enterprise platform for AI as well as a new architecture for data center, cloud Read article >

The post AI for Every Enterprise: NVIDIA, VMware CEOs Discuss Broad New Partnership appeared first on The Official NVIDIA Blog.

AI for Every Enterprise: NVIDIA, VMware CEOs Discuss Broad New Partnership

Promising to bring AI to every enterprise, VMware CEO Pat Gelsinger and NVIDIA CEO Jensen Huang kicked off VMworld 2020 Tuesday with a conversation detailing the companies’ broad new partnership.

VMware and NVIDIA announced that, together, they will deliver an end-to-end enterprise platform for AI as well as a new architecture for data center, cloud and edge that uses NVIDIA DPUs to support existing and next-generation applications.

“We’re going to bring the power of AI to every enterprise. We’re going to bring the NVIDIA AI computing platform and our AI application frameworks onto VMware,” Huang said.

View today’s VMworld 2020 CEO discussion featuring Pat Gelsinger and Jensen Huang, and join us at GTC 2020 on October 5 to learn more.

Through this collaboration, the rich set of AI software available on the NVIDIA NGC hub will be integrated into VMware vSphere, VMware Cloud Foundation and VMware Tanzu.

“For every virtual infrastructure admin, we have millions of people that know how to run the vSphere stack,” Gelsinger said. “They’re running it every day, all day long, it’s now the same tools, the same processes, the same networks, the same security, is now fully being made available on the GPU infrastructure.”

VMware CEO Pat Gelsinger

This will help accelerate AI adoption, enabling enterprises to extend existing infrastructure for AI, manage all applications with a single set of operations, and deploy AI-ready infrastructure where the data resides, across the data center, cloud and edge.

Additionally, as part of VMware’s Project Monterey, also announced Tuesday, the companies will partner to deliver an architecture for the hybrid cloud based on SmartNIC technology, including NVIDIA’s programmable BlueField-2 DPU.

“The characteristics, the pillars of Project Monterey of offloading the operating system, the data center operating system, onto the SmartNIC, isolating the applications from the control plane and the data plane, and accelerating the data processing and the security processing to line speed is going to make the data center so much more powerful, so much more performant,” Huang said.

Among the organizations integrating their VMware and NVIDIA ecosystems is the UCSF Center for Intelligent Imaging.

“I can’t imagine a more impactful use of AI than healthcare,” Huang said. “The intersection of people, disease and treatments is one of the greatest challenges of humanity, and one where AI will be needed to move the needle.”

A leader in the development of AI and analysis tools in medical imaging, the center uses the NVIDIA Clara healthcare application framework for AI-powered imaging and VMware Cloud Foundation to support a broad range of mission-critical workloads.

“This way of doing computing is going to be the way that the future data centers are built. It’s going to allow us to essentially turn every enterprise into an AI,” Huang said. “Every company will become AI-driven.”

“Our audience is so excited to see how we’re coming together, to see how everything they’ve done for the past two decades with VMware now it’s going to be even further expanded,” Gelsinger said.

The post AI for Every Enterprise: NVIDIA, VMware CEOs Discuss Broad New Partnership appeared first on The Official NVIDIA Blog.

Media Alert: October Intel Partner Connect 2020

connect 2x1 1On Oct. 20, Intel will host its second of two Intel® Partner Connect events. With the constantly changing landscape, this is an opportunity for channel partners of all types to hear from Intel leaders on the latest strategies, priorities and challenges and how they apply to growth opportunities.

Together with partners and customers, Intel is building the trusted foundation for computing in a data-centric world. The event will include executive sessions with Intel leaders, and breakout sessions to gain insights into how technology is shaping the future.

The event allows participants to experience solutions and demonstrations of the latest technologies and the ability to connect with Intel and sponsoring partners. Intel Partner Connect serves as an opportunity to interact with the industry’s premier ecosystem for solutions and empower your business to grow faster and drive global progress.

What: Intel Partner Connect (virtual)

Who: Intel channel partners and business leaders

When: 8 a.m. – 1 p.m. PDT, Tuesday, Oct. 20, 2020

RSVP:  Register for Intel Partner Connect

The post Media Alert: October Intel Partner Connect 2020 appeared first on Intel Newsroom.

The Power of Two: VMware, NVIDIA Bring AI to the Virtual Data Center

Two key components of enterprise AI just snapped in place thanks to longtime partners who pioneered virtual desktops, virtual graphics workstations and more. Taking their partnership to a new level, VMware and NVIDIA are uniting accelerated computing and virtualization to bring the power of AI to every company. It’s a collaboration that will enable users Read article >

The post The Power of Two: VMware, NVIDIA Bring AI to the Virtual Data Center appeared first on The Official NVIDIA Blog.

The Power of Two: VMware, NVIDIA Bring AI to the Virtual Data Center

Two key components of enterprise AI just snapped in place thanks to longtime partners who pioneered virtual desktops, virtual graphics workstations and more.

Taking their partnership to a new level, VMware and NVIDIA are uniting accelerated computing and virtualization to bring the power of AI to every company.

It’s a collaboration that will enable users to run data analytics and machine learning workloads in containers or virtual machines, secured and managed with familiar VMware tools. It will create a new sweet spot in hybrid cloud computing with greater control, lowered costs and expanded performance.

The partnership plants behind the firewalls of private companies the power of AI that public clouds provide from the world’s largest AI data centers.

The two companies will demonstrate these capabilities this week at VMworld.

Welcome to the Modern, Accelerated Data Center

Thanks to this collaboration, users will be able to run AI and data science software from NGC Catalog, NVIDIA’s hub for GPU-optimized AI software, using containers or virtual machines in a hybrid cloud based on VMware Cloud Foundation. It’s the kind of accelerated computing that’s a hallmark of the modern data center.

NVIDIA and VMware also launched a related effort enabling users to build a more secure and powerful hybrid cloud accelerated by NVIDIA BlueField-2 DPUs. These data processing units are built to offload and accelerate software-defined storage, security and networking tasks, freeing up CPU resources for enterprise applications.

Enterprises Gear Up for AI

Machine learning lets computers write software humans never could. It’s a capability born in research labs that’s rapidly spreading to data centers across every industry from automotive and banking to healthcare, retail and more.

The partnership will let VMware users train and run neural networks across multiple GPUs in public and private clouds. It also will enable them to share a single GPU across multiple jobs or users thanks to the multi-instance capabilities in the latest NVIDIA A100 GPUs.

To achieve these goals, the two companies will bring GPU acceleration to VMware vSphere to run AI and data-science jobs at near bare-metal performance next to existing enterprise apps on standard enterprise servers. In addition, software and models in NGC will support VMware Tanzu.

With these links, AI workloads can be virtualized and virtual environments become AI-ready without sacrificing system performance. And users can create hybrid clouds that give them the choice to run jobs in private or public data centers.

Companies will no longer need standalone AI systems for machine learning or big data analytics that are separate from their IT resources. Now a single enterprise infrastructure can run AI and traditional workloads managed by VMware tools and administrators.

“We’re providing the best of both worlds by bringing mature management capabilities to bare-metal systems and great performance to virtualized AI workloads,” said Kit Colbert, vice president and CTO of VMware’s cloud platform group.

Demos Show the Power of Two

Demos at VMworld will show a platform that delivers AI results fast as the public cloud and robust enough to tackle critical jobs like fighting COVID-19. They will run containers from NVIDIA NGC, managed by Tanzu, on VMware Cloud Foundation.

We’ll show those same VMware environments also tapping into the power of BlueField-2 DPUs to secure and accelerate hybrid clouds that let remote designers collaborate in an immersive, real-time environment.

That’s just the beginning. NVIDIA is committed to giving VMware the support to be a first-class platform for everything we build. In the background, VMware and NVIDIA engineers are driving a multi-year effort to deliver game-changing capabilities.

Colbert of VMware agreed. “We view the two initiatives we’re announcing today as initial steps, and there is so much more we can do. We invite customers to tell us what they need most to help prioritize our work,” he said.

To learn more, register for the early-access program and tune in to VMware sessions at GTC 2020 next week.

 

 

The post The Power of Two: VMware, NVIDIA Bring AI to the Virtual Data Center appeared first on The Official NVIDIA Blog.

Networks on Steroids: VMware, NVIDIA Power the Data Center with DPUs

The data center’s grid is about to plug in to a new source of power. It rides a kind of network interface card called a SmartNIC. Its smarts and speed spring from an ASIC called a data processing unit. In short, the DPU packs the power of data center infrastructure on a chip. DPU-enabled SmartNICs Read article >

The post Networks on Steroids: VMware, NVIDIA Power the Data Center with DPUs appeared first on The Official NVIDIA Blog.

Networks on Steroids: VMware, NVIDIA Power the Data Center with DPUs

The data center’s grid is about to plug in to a new source of power.

It rides a kind of network interface card called a SmartNIC. Its smarts and speed spring from an ASIC called a data processing unit.

In short, the DPU packs the power of data center infrastructure on a chip.

DPU-enabled SmartNICs will be available for millions of virtualized servers thanks to a collaboration between VMware and NVIDIA. They bring advances in security and storage as well as networking that will stretch from the core to the edge of the corporate network.

What’s more, the companies announced a related initiative that will put the power of the public AI cloud behind the corporate firewall. It enables enterprise AI managed with familiar VMware tools.

Lighting Up the Modern Data Center

Together, these efforts will give users the choice to run machine learning workloads in containers or virtual machines, secured and managed with familiar VMware tools. And they will create a new sweet spot in hybrid cloud computing with greater control, lowered costs and the highest performance.

Laying the foundation for these capabilities, the partnership will help users build more secure and powerful distributed networks inside VMware Cloud Foundation, powered by the NVIDIA BlueField-2 DPU. It’s the Swiss Army knife of data center infrastructure that can accelerate security, storage, networking, and management tasks, freeing up CPUs to focus on enterprise applications.

The DPU’s jobs include:

  • Blocking malware
  • Advanced encryption
  • Network virtualization
  • Load balancing
  • Intrusion detection and prevention
  • Data compression
  • Packet switching
  • Packet inspection
  • Managing pools of solid-state and hard-disk storage

Our DPUs can run these tasks today across two ports, each carrying traffic at 100 Gbit/second. That’s an order of magnitude faster than CPUs geared for enterprise apps. The DPU is taking on these jobs so CPU cores can run more apps, boosting vSphere and data center efficiency.

As a result, data centers can handle more apps and their networks will run faster, too.

“The BlueField-2 SmartNIC is a fundamental building block for us because we can take advantage of its DPU hardware for better network performance and dramatically reduced cost to operate data center infrastructure,” said Kit Colbert, vice president and CTO of VMware’s cloud platform group.

NVIDIA BlueField-2 DPU in VMware's Project Monterey
Running VMware Cloud Foundation on the NVIDIA BlueField-2 DPU provides security isolation and lets CPUs support more apps per server.

Securing the Data Center with DPUs

DPUs also will usher in a new era of advanced security.

Today, most companies run their security policies on the same CPUs that run their applications. That kind of multitasking leaves IT departments vulnerable to malware or attacks in the guise of a new app.

With the BlueField DPU, all apps and requests can be vetted on a processor isolated from the application domain, enforcing security and other policies. Many cloud computing services already use this approach to create so-called zero-trust environments where software authenticates everything.

VMware is embracing SmartNICs in its products as part of an initiative called Project Monterey. With SmartNICs, corporate data centers can take advantage of the same advances Web giants enjoy.

“These days the traditional security perimeter is gone. So, we believe you need to root security in the hardware of the SmartNIC to monitor servers and network traffic very fast and without performance impacts,” said Colbert.

BlueField-2 DPU demo with VMwar
A demo shows an NVIDIA BlueField-2 DPU preventing a DDOS attack that swamps a CPU.

See DPUs in Action at VMworld

The companies are demonstrating these capabilities this week at VMworld. For example, the demo below shows how virtual servers running VMware ESXi clients can use Bluefield-2 DPUs to stop a distributed denial-of-service attack in a server cluster.

Leading OEMs are already preparing to bring the capabilities of DPUs to market. NVIDIA also plans to support BlueField-2 SmartNICs across its portfolio of platforms including its EGX systems for enterprise and edge computing.

You wouldn’t hammer a nail with a monkey wrench or pound in a screw with a hammer — you need to use the right tool for the job. To build the modern data center network, that means using an NVIDIA DPU enabled by VMware.

The post Networks on Steroids: VMware, NVIDIA Power the Data Center with DPUs appeared first on The Official NVIDIA Blog.